REPORT

961267

First Quarter Vapor Intrusion Investigation Report North Bronson Industrial Area Operable Unit 1 Bronson, Michigan

NBIA OUI PRP Group

June 2008

REPORT

First Quarter Vapor Intrusion Investigation Report North Bronson Industrial Area Operable Unit 1 Bronson, Michigan

NBIA OUI PRP Group

Scott L. Cormier, PE Vice President Michigan PE # 39613

June 2008

TABLE OF CONTENTS

List of Tables	
List of Tables List of Figures List of Appendices	
List of Appendices	
1.0. Introduction	1
1.1. Purpose and objectives	
2.0. Soil vapor program activities	3
2.0. Soil vapor program activities	3
2.2. Soil Vapor probe sampling	4
2.3. Decontamination procedures	
2.4. Handling of investigation-derived waste	5
2.5. Sampling documentation	
2.6. Validation, management, and evaluation	
3.0. Findings	6
3.1. Geology and hydrogeology	
3.2. Field observations	<i>6</i>
3.3. Soil vapor results	<i>6</i>
3.4. Data evaluation	7
4.0. References	

List of Tables

Table 1 - Soil Vapor Sample Results

List of Figures

Figure 1 – Site Location Map

Figure 2 – Soil Gas (Vapor) Sampling Locations

List of Appendices

Appendix A – Soil Boring Logs

Appendix B – Vapor Probe Construction Details

Appendix C – Soil Vapor Sample Collection Field Forms

Appendix D – Analytical Laboratory Report

Appendix E – Data Validation Report

This page left intentionally blank.

1.0. Introduction

The North Bronson Industrial Area (NBIA) Site Operable Unit 1 (OU1) Potentially Responsible Parties (PRP Group) retained O'Brien & Gere to implement the Vapor Intrusion Work Plan (O'Brien & Gere, 2007) for OU1 at the NBIA Site. This Work Plan was approved by the United States Environmental Protection Agency (USEPA) via letter dated September 4, 2007, and was subsequently modified in accordance with correspondence between the PRP Group and USEPA dated January 16, 2008. The work completed during this portion of the Vapor Intrusion Study was conducted in accordance with the approved Work Plan, except as noted in this report.

1.1. Purpose and objectives

The purpose of the Vapor Intrusion Study is to aid in evaluating the vapor intrusion potential attributable to NBIA OU1 impacted ground water, with the goal of identifying whether nearby residential, commercial, or industrial structures may be affected by vapor intrusion. The purpose of this report is to communicate the activities associated with the first quarter of the four-quarter program of soil gas sampling, laboratory analysis, and data management. Descriptions of the site, site background, geology and hydrogeology, and ground water flow and quality characteristics were provided in the Work Plan. Further discussion of these topics is provided in this report only to the extent they pertain to the soil gas sampling activities described herein.

This page left intentionally blank.

2.0. Soil vapor program activities

The objective of this task was to evaluate the potential presence of constituents of concern (COCs) in soil gas proximal to the Western Lagoon Area (WLA). To accomplish this objective, discrete subsurface soil gas samples were collected for laboratory analysis of select volatile organic compounds (VOCs) from five locations (*i.e.*, SG-8 through SG-12), as shown in Figure 2. The locations of the vapor probes were adjusted slightly from the proposed locations to relocate them along tree lines to protect them from damage and to place SG-8 on higher ground due to the high water table. These locations provide information regarding the potential presence of soil vapor migration in the vicinity of the WLA to the east, south, and west and are designed to identify the potential for soil vapor intrusion in the event that structures would be built near the lagoon area. County Drain #30 forms the northern perimeter of the WLA, and this incised drainageway significantly reduces the potential vapor intrusion concerns to the north by truncating the vadose zone in this area.

Soil gas sampling locations SG-8 and SG-9 (Figure 2) were strategically located between the WLA and the City of Bronson Wastewater Treatment Plant (WWTP) near the alignment of the city storm sewer that could potentially act as a preferential pathway for soil vapor migration. Compared to sampling adjacent to the WWTP, the selected locations of SG-8 and SG-9 were intended to provide more definitive information regarding the potential for soil vapors originating at the WLA to impact the main building of the WWTP. The WWTP is generally upgradient of the WLA and at a distance of at least 300 feet (Figure 2).

The following sections provide a brief summary of the activities conducted during the first quarter of the soil vapor program. A more detailed description of the procedures used during the implementation of the soil vapor program is provided in the Section A5 (Sampling Procedure Plan) of the Field Sampling and Quality Assurance Plan, Revision 2, Addendum 1 (FSQAP Addendum 1), which is included as Appendix A to the Work Plan.

The soil gas sampling program was conducted in accordance with the Health and Safety Plan, Addendum I, contained in Appendix B of the Work Plan. Prior to initiating site activities, MISSDIG, Michigan's utility clearance hotline, was contacted to clear the proposed vapor probe locations. The proposed locations were also screened by WorkSmart, Inc. of Lawrence, Michigan, to clear the locations for buried utilities. Field activities were initiated on April 23, 2008, and the first quarter soil gas sampling event was completed on April 25, 2008.

2.1. Soil vapor probe installation

An initial soil boring was advanced through the unconsolidated soils to a depth of 5 feet below grade (fbg) at each of the soil vapor probe locations to collect a soil sample and to identify the depth to the ground water table. A direct push drill rig (i.e., Geoprobe®) mounted on an all-terrain vehicle and direct-push soil sampling methods were used to advance these borings. Stearns Drilling Company of Dutton, Michigan provided drilling services for the soil vapor probe installation. The soils encountered during drilling at the initial boreholes were classified in the field in accordance with the standard Unified Soil Classification System (USCS) (ASTM 1990) and soil boring logs were prepared (Appendix A). Geologic descriptions included organic vapor readings collected using a flame ionization detector (FID) and the depth to water or saturated zone.

The soil vapor probe corresponding to each of these borings was then located approximately 3 feet away from the initial borehole and was advanced to a target depth no closer than 1 foot above the saturated soils. This technique facilitated the collection of soil vapor samples considered representative of potential sub-slab concentrations for buildings with basements and is a conservative estimate of sub-slab concentrations for buildings with slab-on-grade construction. The initial boreholes were filled with bentonite slurry after completion to minimize short-circuiting of ambient air into the soil vapor probes.

The soil vapor probes consisted of a 6-inch length of double-woven stainless steel wire screen with a pore diameter of 0.0057 inches (0.145 millimeters) attached to an appropriate length of Teflon® tubing. Teflon® was used in lieu of Nalgene® 489 polyethylene tubing to provide better performance (less potential for absorption) for vapor probes intended to remain in place for one year or more. The soil vapor probes were driven to the target depths using dual tube sampling rods. As the rods were removed, the annular space around the screen was packed with appropriately sized glass beads to 6-inches above the screened interval. The annular space around the tubing was sealed with approximately 1 foot of a dry granular bentonite to prevent water infiltration/infilling across the sample inlet. The remainder of the boring annular space was sealed above the sampling zone to ground surface with bentonite slurry to prevent ambient air infiltration. A flush-mounted protector casing was installed around the vapor probe to protect it from damage and tampering. Appendix B contains vapor probe construction details for the probe locations.

The locations and elevations of the new soil vapor probes will be surveyed by a licensed surveyor (using the same coordinate system used for other surveys within the NBIA) during upcoming surveying activities at the site associated with the Ground Water Delineation study. In the meantime, the locations of the soil vapor probes were established by measuring their locations relative to existing site features including fences and monitoring wells and were incorporated into the existing Site base map (Figure 2).

2.2. Soil Vapor probe sampling

Discrete samples of soil gas were collected from the soil probes. Prior to the collection of the soil vapor samples, the sampling tubing was purged of ambient air. A minimum of one and a maximum of three volumes of air within the sample probe and tubing were purged prior to sample collection. In addition, helium tracer gas screening was used during sampling of the five soil vapor probes to evaluate the adequacy of the sampling technique and identify potential short-circuiting from the ground surface during sample collection. The tracer gas screening and soil vapor probe sampling procedures implemented during this sampling event were consistent with the procedures provided in the Work Plan. A Dielectric Technologies Model MGD-2002 helium detector was used to screen the extracted vapor stream for helium. This detector is more sensitive than the Mark Helium Model 9822 detector specified in the Work Plan, with a sensitivity of 25 parts per million by volume (ppmv); therefore, it meets the "or equivalent" requirement of the Work Plan. No short-circuiting was observed, and the vapor probes passed this screening test. Soil gas samples were then collected over a four-hour period at each location in accordance with the Work Plan.

The soil vapor samples were submitted under routine chain-of-custody protocols to TestAmerica of Burlington, Vermont, which is a National Environmental Laboratory Accreditation Conference (NELAC) certified laboratory for analysis of the COCs (*i.e.*, trichloroethene [TCE], cis-1,2-dichoroethene, trans-1,2-dichoroethene, and vinyl chloride) by USEPA Method TO-15. Quality assurance/quality control (QA/QC) measures were implemented during the field sampling activities

including documentation of sample container vacuum/pressure before and after sample collection, chain-of-custody protocols, field (or equipment) blanks accompanying empty SUMMA canisters to the field and filled sample containers back to the laboratory, and the collection of a field duplicate sample.

2.3. Decontamination procedures

In accordance with the Work Plan, the field sampling program included decontamination procedures to minimize the potential for contaminants to be introduced into the sample locations or transferred across the study area. Equipment that came into contact with soil, underwent an initial cleaning process, was cleaned between vapor probe locations to prevent cross-contamination, and was cleaned prior to leaving the study area at the conclusion of drilling activities.

2.4. Handling of investigation-derived waste

Investigation-derived waste (IDW) including soils, decontamination fluids, personal protective equipment, and disposable sampling supplies resulting from the field activities were segregated and placed in new, properly labeled United States Department of Transportation (DOT)-approved 55-gallon drums. The IDW drums were staged in the WLA.

2.5. Sampling documentation

The collection of soil vapor samples was documented on soil vapor sample collection field forms contained in Appendix C. The collection, transfer of custody, and shipping of the samples to the analytical laboratory were documented using chain-of-custody forms contained in Appendix D, along with the analytical reports for the first quarterly sample event.

2.6. Validation, management, and evaluation

The analytical data generated during the first quarterly sampling event were validated, and the usability of the data for assessing the extent of COCs was assessed. The data validation report for the first quarterly sampling event is contained in Appendix E.

Data management procedures were established to effectively process the data generated during the investigation such that the relevant data descriptions (sample numbers, methods, procedures) are readily accessible and accurately maintained. Data were collected and recorded in a variety of ways during the sampling program. These included utilizing standard field forms, field notebooks, and laboratory generated data. The original forms and data are maintained in O'Brien & Gere's files. Data amenable to computerization, such as analytical data, were input to a data storage system.

3.0. Findings

The information obtained from the activities described in Section 2 is presented in the following section. Information supporting the observations and findings presented in this report is provided in the table, figures, and appendices of this report.

3.1. Geology and hydrogeology

The soils encountered during the installation of the soil vapor probe borings SG-8 through SG-12 consisted of the following:

- A vegetated yellowish brown (grayish brown at SG-8), damp silty sand (i.e., topsoil) (USCS SM) to a depth of 1 fbg,
- A damp, yellowish brown clayey sand (USCS SC) or sandy clay (USCS CL) to depths of between 2.0 fbg at SG-12 to 4.3 fbg at SG-8, and
- A yellowish brown to orange, moist to wet, sand with trace to some gravel (USCS SP) to the termination of the boreholes at 5 fbg. Varying amounts of silt were indicated in the sand layer at SG-12 (USCS SM to SP).

The depth to ground water on April 23, 2008 ranged from 4.0 fbg at SG-9 through SG-12 to 4.3 fbg at SG-8 (see Appendix A); therefore, the vapor probes were installed at either 3.0 fbg at SG-9 through SG-12 or 3.3 fbg at SG-8 (see Appendix B) in consultation with the USEPA, the Michigan Department of Environmental Quality (MDEQ), and NBIA OU1 PRP Group. The depth to ground water was shallower than expected below grade and was likely elevated because of recent heavy rains in the area. It is expected that the water levels encountered during summer and fall sampling will be lower than the levels observed during this sampling event. Placement of the probes at the 3.0 to 3.3 fbg depths will likely maintain these sampling points above seasonal fluctuations in ground water levels.

3.2. Field observations

FID readings of 0 ppmv were recorded at each of the soil borings during the installation of the soil vapor probes (see Appendix A). No significant olfactory observations were recognized during drilling or sampling, and no visual observations of potential impacts were detected during the vapor probe installation activities.

3.3. Soil vapor results

The analytical results for soil vapor samples collected during the first quarterly sampling event are presented in Table 1. The analytical laboratory report for this sampling event is contained in Appendix D. TCE was the only COC detected during this sampling event. TCE was detected in the soil vapor samples at concentrations ranging from 1.7 micrograms per cubic meter ($\mu g/m^3$) at SG-9 to 1,200 $\mu g/m^3$ in the duplicate sample from SG-12. No COCs were detected in the field blank associated with this sampling event, and the duplicate sample from SG-12 was within acceptable

relative percent difference criteria. The data met the QA/QC criteria set forth in the FSQAP; therefore, no data qualifiers were necessary for this data set, and the data set is considered 100% usable (see Appendix E).

3.4. Data evaluation

Table 1 also provides the MDEQ Acceptable Soil Gas Screening Concentrations (ASGSCs) for both residential and industrial criteria for both the DEEP 5' and SUB-SLAB exposure scenarios. The TCE concentrations determined at all five soil gas probes around the WLA are below the industrial criteria for both exposure scenarios and below the residential DEEP 5' criteria. The TCE results at SG-10 and SG-12, located just south and west respectively of the WLA, exceeded the residential SUB-SLAB scenario ASGSC of 700 μ g/m³ with concentrations of 1,100 μ g/m³ (1,200 μ g/m³ in the associated duplicate sample for SG-12).

The existing vapor probes will be re-sampled during the next sampling event currently scheduled to occur in July 2008 to evaluate whether transient and environmental influences significantly affect subsurface COC concentrations

This page left intentionally blank.

4.0. References

ARCADIS Geraghty & Miller, Inc. (ARCADIS). 2002a. Draft Phase II Pre-Design Studies Technical Memorandum. North Bronson Industrial Area. Operable Unit 1. December 4, 2002.

ARCADIS. 2002b. *Pre-Design Studies Report (Revision 2)*. North Bronson Industrial Area. Operable Unit 1. March 5, 2002.

ARCADIS. 2005. Groundwater Quality Investigation Technical Memorandum. North Bronson Industrial Area. Operable Unit 1. April 13, 2005.

MDEQ. 1998. Part 201 Generic Ground Water and Soil Volatilization to Indoor Air Inhalation Criteria: Technical Support Document. Environmental Response Division. August 31, 1998.

MDEQ. 2006. Peer Draft Review Operational Memorandum No. 4, Attachment 4 – Soil Gas and Indoor Air. Remediation and Redevelopment Division (RRD). February, 2006.

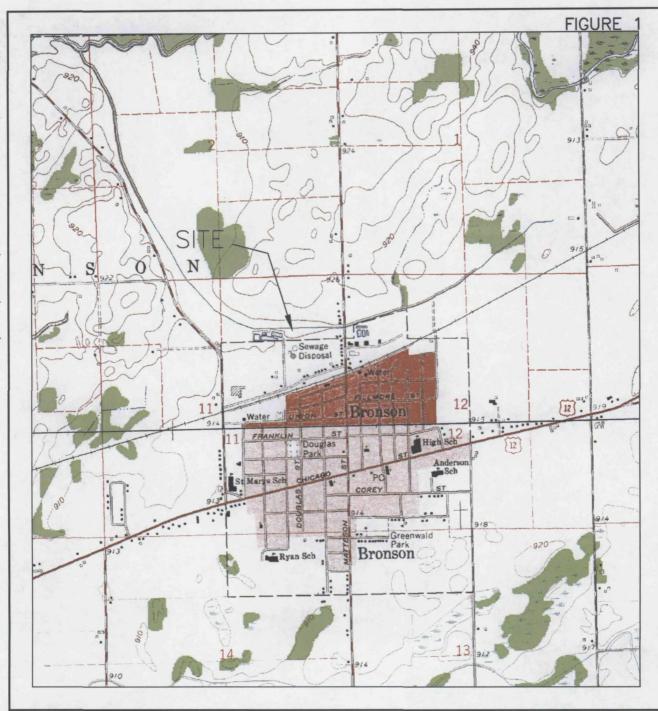
O'Brien & Gere. 2007. Vapor Intrusion Work Plan. North Bronson Industrial Area. Operable Unit 1. August, 2007.

USEPA. 1998. *EPA Superfund Record of Decision (EPA/ROD/R05-98/024)*. North Bronson Industrial Area. EPA ID: MID005480900. OU 01. Bronson, Michigan. June 19, 1998.

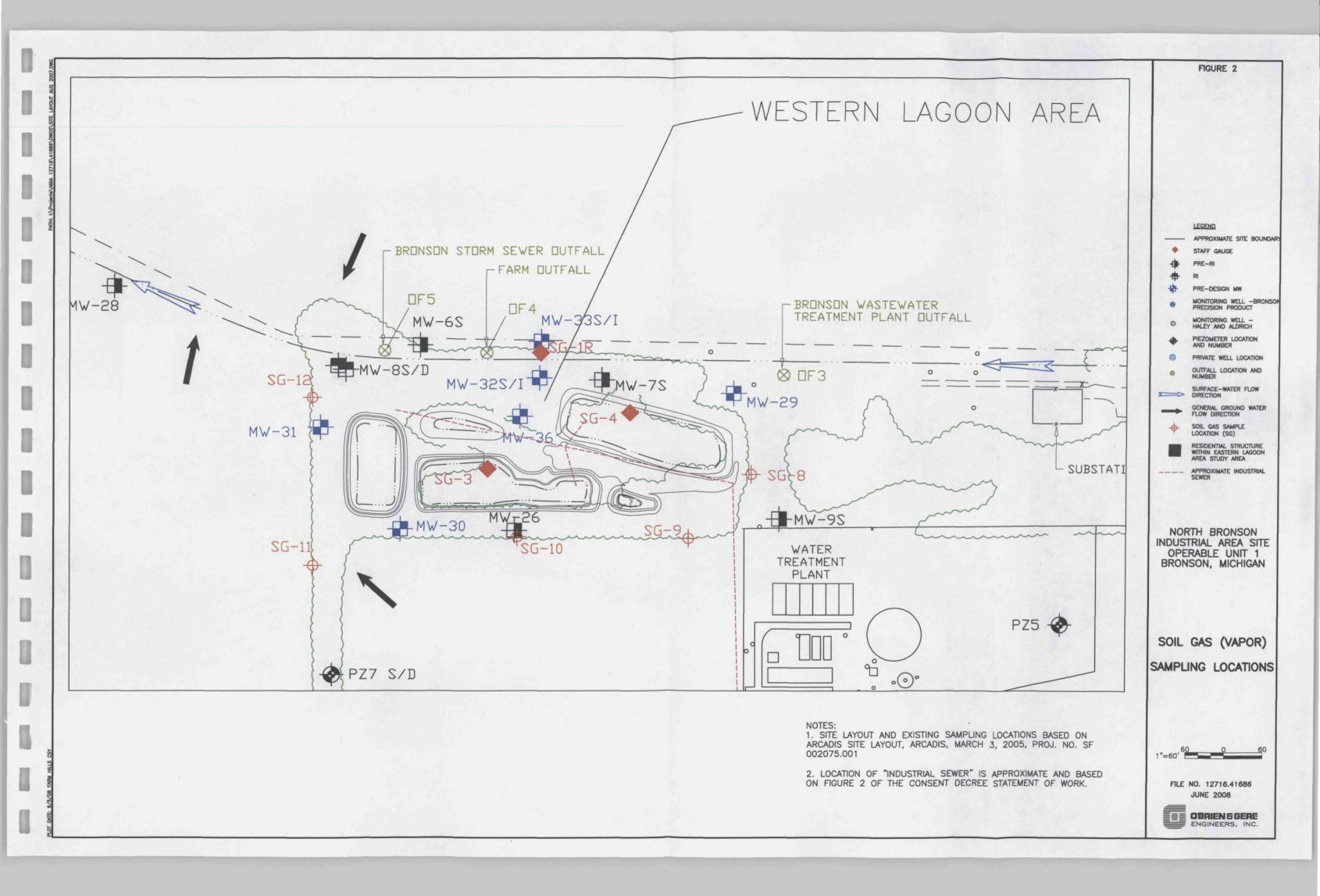
USEPA. 1999. North Bronson Industrial Area Site Consent Decree. March 12, 1999.

USEPA. 2002. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. Office of Solid Waste and Emergency Response. Washington, D.C. USEPA 530-F-02-052.

TABLES


Table 1 Soil Vapor Sample Results Western Lagoon Area North Bronson Industrial Area Site

	Criteria				Western Lagoon						
Compound	DEEP 5' Residential ASGSCs	SUB-SLAB Residential ASGSCs	DEEP 5' Industrial ASGSCs	SUB-SLAB Industrial ASGSCs	SG-8 2.8-3.3'	SG-9 2.5-3.0	SG-10 2.5-3.0	SG-11 2.5-3.0	SG-12 2.5-3.0'	SG-12 2.5-3.0 ^t (Dup-1)	Field Blank (FB-1)
cis-1,2-Dichloroethylene	18,000	1,800	26,000	2,600	2.0 U	0.79 U	4.4 U	0.79 U	5.2 U	4.8 U	0.79 U
trans-1,2-Dichloroethylene	37,000	3,700	50,000	5,000	2.0 U	0.79 U	4.4 U	0.79 U	5.2 U	4.8 U	0.79 U
Trichloroethylene	7,000	700	29,000	2,900	400	1.7	1,100	46	1,100	1,200	1.1 U
Vinyl Chloride	2,800	280	12,000	1,200	1.3 U	0.51 U	2.8 U	0.51 U	3.3 ∪	3.1 U	0.51 U


Notes:

- 1. See laboratory data reports for analytical methods and quality control data.
- 2. All concentrations reported in units of ug/m³.
- 3. For clarity, all detections are shown in bold-face type.
- 4. Concentrations exceeding the Deep 5' Residential ASGSCs are shaded and concentrations exceeding the SUB-SLAB Residential ASGSCs are italicized. Source: MDEQ. 2006. Peer Draft Review Operational Memorandum No. 4, Attachment 4 Soil Gas and Indoor Air Appendix D. Remediation and Redevelopment Division (RRD). February, 2006.
- 5. Organic data qualifiers:
 - U not detected at indicated detection limit.
 - J concentration qualified as estimated.

FIGURES

APPENDIX A

Soil Boring Logs

		I C OFBE			SOIL BORING LOG	BORING I.D.: SG-8				
	O'BRIEN ENGINE	ERS, INIC		Boring Location:	East side of WLA	Surface El	PAG evation (ft MS		1	
PROJE	ROJECT NAME: CT LOCATION: FILE NO.;	Bronson, Mich 12716/41686#4	nigan 1	Sampling equipment: Borehole Diameter: Total Depth:	5 feet below grade	Top of Cas Northing: Easting: Depth to g	sing Elevation	(ft MSL):	·	
	FOREMAN:	Stearns Drilling Co. Mike Hefferan Kevin Schneider		Start date: Completion date:		LEGEND:	Granula		Screen Riser	
DEPTH BELOW	CORE	PENETR/ RECOVERY	Analytical Sample Interval	·	SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL	Equipment Installed		d	
GRADE	(ft bg)	(ft bg)	(ft bg)			DESCRIPT		Headspace	<u> </u>	
0	0-5	3.5'	5'	Vegetation at surface, gra	ayish brown 5YR 3/2, damp, silty SAND	(SM)		0.0		
1				Dark yellowish brown 10°	YR 4/2, damp, sandy CLAY	1' (CL)		0.0		
2								0.0		
3				Dark yellowish brown 101	YR 4/2, moist, clayey SAND, trace gravel	3' (SC)	===	0.0		
4				Moderate yellowish brow	n 10YR 5/4, wet, well graded SAND, little gravel	4.3' (SP)		0.0		
5					End of Boring at 5 fbg	5'				
6										
7										
8										
9										
10										
11										
12										
13							•			
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
lotes:										

^{1.} Subsequent to soil sampling activities the initial borehole was backfilled with bentonite.
2. 5 ft hydraulic probe macro core sampler used, therefore no blow counts.
3. The depth to water in the initial borehole was at 4.3 fbg.
4. A soil vapor point was subsequently installed adjacent to the initial borehole location. The probe point was set at 2.8-3.3 fbg and completed as a flush mount.

SOIL BORING LOG BORING I.D.: SG-9										
	OBRIEN ENGINE	I & GERE ERS, INC.		Boring Location:	Southeast side of WLA		PAGE		1	
PROJE	ROJECT NAME: CT LOCATION: FILE NO.:	Bronson, Mich 12716/41686#4	higan 4	Sampling equipment: Borehole Diameter: Total Depth:	5 feet below grade	Top of Cas Northing: Easting:	evation (ft MSL ing Elevation (ound water: 4'	ft MSL):	To	
	NG COMPANY: FOREMAN: G GEOLOGIST:	Mike Hefferan	_	Completion date:	4/23/2008 4/23/2008	LEGEND:	Bentonite Granular Sand Page			
DEPTH BELOW	CORE	PENETR/ RECOVERY	Analytical Sample Interval		SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL		Fiel Test	ld	
GRADE 0	(ft bg)	(ft bg)	(ft bg)	V		DESCRIPT		Headspace_	├	
. 0	0 - 5	4'	3	vegetation at surface, da	rrk yellowish brown 10YR 4/2, damp silty SAND	(SM)		0.0		
1				Moderate yellowish brow	n 10YR 5/4, damp silty CLAY, medium plasticity, trace roots	1' (CL)		0.0		
2				Moderate yellowish brow	n 10YR 5/4, damp, fine SAND	2.5' (SP)	===	0.0		
3				Dark vellowish grange 10	IYR 6/6, moist, fine SAND	(SP)		0.0		
4				1	k, wel, well graded SAND, little gravel	4.0' (SP)		0.0		
5					End of Boring at 5 fbg	5'		0.0		
6										
7										
8									}	
9	_									
10										
11										
12										
13								·		
14										
15	-									
16										
17	_								ſ	
18							İ			
19	_									
20										
21										
22										
								ł	l	
23	.,								1	
votes:										

- 1. Subsequent to soil sampling activities the initial borehole was backfilled with bentonite.
 2. 5 It hydraulic probe macro core sampler used, therefore no blow counts.
 3. The depth to water in the initial borehole was at 4.0 fbg.
 4. A soil vapor point was subsequently installed adjacent to the initial borehole location. The probe point was set at 2.5-3 fbg and completed as a flush mount.

		CCEDE			BORING	BORING I.D.: SG-10				
	OBRIEN	ERS, INC.		Boring Location:	South side of WLA	Surface Flo	PAGE evation (ft MSL)			
PROJE	ROJECT NAME: CT LOCATION: FILE NO.:	Bronson, Micl 12716/41686#4	nigan ‡	Sampling equipment: Borehole Diameter: Total Depth:	5 feet below grade	Top of Cas Northing: Easting: Depth to g	ing Elevation (f	t MSL):		
	NG COMPANY: FOREMAN: G GEOLOGIST:	Mike Hefferan		Start date: 4/23/2008 Completion date: 4/23/2008		LEGEND:	Granular i		1	
			Analytical			STRATUM	Equipment	Field		
DEPTH BELOW	CORE INTERVAL	PENETR/ RECOVERY	Sample Interval		SAMPLE DESCRIPTION	CHANGE GENERAL	Installed	Testing FID		
GRADE		(ft bg)	(ft bg)			DESCRIPT		Headspace	_	
0	0 - 5	4'	5'	Dark yellowish brown 10	YR 4/2, damp silty SAND	(SM)				
1				Moderate vollewich brow	rn 10YR 5/4, damp clayey SAND	1' (SC)		0.0		
 -				Moderate yellowish blow	in 10111 3/4, daily dayey SAND	1 (00)		0.0		
2]		1				
							===	0.0		
3			· · · · · · · · · · · · · · · · · · ·			3.8'		0.0		
4		l		Same as above, trace gr Dark vellowish orange 10	avei DYR 6/6, wet, well graded SAND, some gravel	4.0' (SP)		0.0		
								0.0		
5					End of Boring at 5 fbg	5'				
6				-						
- "-										
7							Ì			
8			· -							
9								ļ		
10										
11	ļ									
12										
		· -					İ			
13						İ				
14						1 1	1			
	<u> </u>						ļ			
15							į			
16]]		1		
17						ĺ	1	1	1	
18										
								}	1	
19										
20										
21								1		
								1		
22									-	
23										
Motes:					<u> </u>					

- Notes:

 1. Subsequent to soil sampling activities the initial borehole was backfilled with bentonite.

 2. 5 (t hydraulic probe macro core sampler used, therefore no blow counts,

 3. The depth to water in the initial borehole was at 4.0 (bg.)

 4. A soil vapor point was subsequently installed adjacent to the initial borehole location. The probe point was set at 2.5-3 (bg and completed as a flush mount.

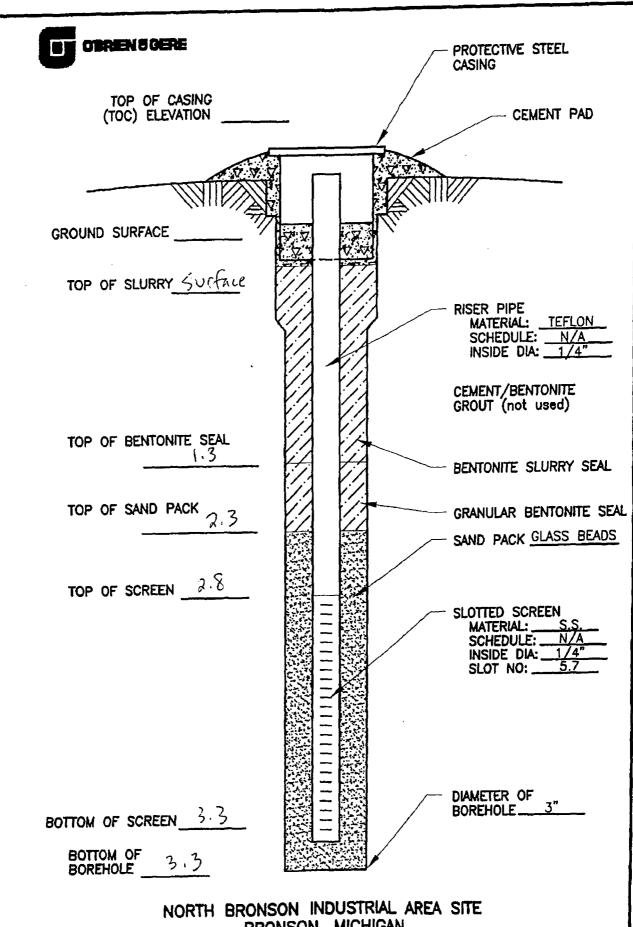
					SOIL BORING LOG	BORING	I.D.: SG	i-11	
	OBRIEN			Boring Location:	Southwest side of WLA		PAGE		1
PROJE	CLIENT: OJECT NAME: CT LOCATION: FILE NO.: VG COMPANY:	NBIA OU1 PRI VI Study Bronson, Mich 12716/41686#4	higan 4 ng Co.	Borehole Diameter:	Stainless steel macro-core sampler, 5 ft by 2" dia 2.5 inches 5 feet below grade 4/23/2008	Top of Cas Northing: Easting:	evation (ft MSL sing Elevation (round water: 4	(ft MSL):	Screen Riser
ОВО	GEOLOGIST:			Completion date:	4/23/2008			ck (Glass Beads)	
DEPTH BELOW GRADE	CORE INTERVAL (ft bg)	PENETR/ RECOVERY (ft bg)	Analytical Sample		SAMPLE DESCRIPTION	STRATUM CHANGE GENERAL DESCRIPT	Equipment Installed	Field Testin FID Headspace	.
0	0 - 5	3.5	5'	Vegetation at surface, da	rk yellowish brown 10YR 4/2, damp sitty SAND	(SM)			
1				Moderate yellowish brow	n 10YR 5/4, damp, clayey SAND	1' (SC)		0.0 0.0	
3				Pale yellowish brown 10Y	/R 6/2, moist, sandy CLAY	2.5' (CL)		0.0	
		· · · · · · · · · · · · · · · · · · ·				1	į	0.0	
4				Dark yellowish orange 10	YR 6/6, wet, well graded SAND, little gravel	4.0' (SP)		0.0	
5					End of Boring at 5 fbg	5'			
6									
7									
8									
9									
10									
11									
12									
13				1					
14	_								
15									
16									
17								ľ	ľ
18			i						
						, ,			
19									ļ
20									
21									
22									
23									
lotes:									

- 1. Subsequent to soil sampling activities the initial borehole was backfilled with bentonite.
 2. 5 ft hydraulic probe macro core sampler used, therefore no blow counts.
 3. The depth to water in the initial borehole was at 4.0 fbg.
 4. A soil vapor point was subsequently installed adjacent to the initial borehole location. The probe point was set at 2.5-3 fbg and completed as a flush mount.

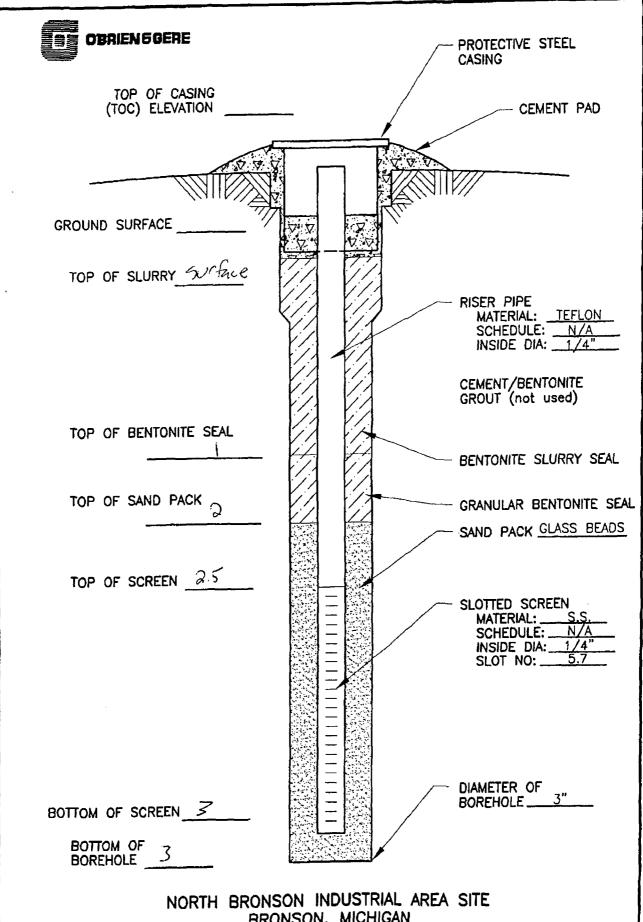
	E Obolesi	CEDE		SOIL BORING LOG BORING I.D.: SO			G-12		
	OBRIEN ENGINE	ERS.INC		Boring Location:	Northwest side of WLA	2 / 5	PAG		1
PROJE	OJECT NAME: CT LOCATION: FILE NO.:	Bronson, Mich 12716/41686#4	igan	Sampling equipment: Borehole Diameter: Total Depth:	5 feet below grade	Top of Ca Northing: Easting: Depth to g	ground water: 4	(ft MSL):	<u> </u>
	FOREMAN:	G COMPANY: Stearns Drilling (FOREMAN: Mike Hefferan GEOLOGIST: Kevin Schneider		Start date: Completion date:		LEGEND	Granula		Screen Riser
		Kevin Schlield	Analytical			STRATUM	Equipment	Field	d
DEPTH BELOW	CORE INTERVAL	PENETR/ RECOVERY	Sample Interval		SAMPLE DESCRIPTION	CHANGE		Testii FID	ng Í
GRADE	(ft bg)	(ft bg)	(ft bg)		SAMPLE BESCHIP HON	DESCRIP		Headspace	
0	0 - 5	3.5	5'	Vegetation at surface, da	rk yellowish brown 10YR 4/2, damp, silty SAND	(SM)			
1				Moderate yellowish brow	n 10YR 5/4, damp, sandy CLAY	1' (CL)		0.0	
							H	0.0	
2		<u> </u>		Moderate yellowish brow Same as above, little gra	n 10YR 5/4, damp silty SAND	2' (SM) 2.5'	-==	0.0	
3				1	VPR 6/6, moist, well graded SAND, little silt, trace gravel	3' (SP-SM)		-	
								0.0	
4			<u> </u>	Same as above, except v	vet	4 0'			
		_	···	Dark yellowish orange 10		4.5' (SP)	İ	0.0	
5					End of Boring at 5 fbg	5'			
6									
7									
				-					
8				1					
9				1					
10									
11									
12									
13							,		
14							1		
14						ĺ]]	
15									
16									
17									
						İ			
18									
-10						1			
19									
20									
21									
22	——								
									İ
23									ļ
Votes:									

- Notes:

 1. Subsequent to soil sampling activities the initial borehole was backfilled with bentonite.


 2. 5 ft hydraulic probe macro core sampler used, therefore no blow counts.

 3. The depth to water in the initial borehole was at 4.0 fbg.


 4. A soil vapor point was subsequently installed adjacent to the initial borehole location. The probe point was set at 2.5-3 fbg and completed as a flush mount.

APPENDIX B

Vapor Probe Construction Details

NORTH BRONSON INDUSTRIAL AREA SITE BRONSON, MICHIGAN SG-_∑

BRONSON, MICHIGAN

OBRIEN 6 GERE	PROTECTIVE STEEL SG-18 CASING
TOP OF CASING (TOC) ELEVATION	CEMENT PAD
GROUND SURFACE	
TOP OF SLURRY SMAFAUT-	RISER PIPE MATERIAL: TEFLON SCHEDULE: N/A INSIDE DIA: 1/4"
TOP OF BENTONITE SEAL	CEMENT/BENTONITE GROUT (not used) BENTONITE SLURRY SEAL
TOP OF SAND PACK	GRANULAR BENTONITE SEAL SAND PACK GLASS BEADS
TOP OF SCREEN 3.5	SLOTTED SCREEN MATERIAL: S.S. SCHEDULE: N/A INSIDE DIA: 1/4" SLOT NO: 5.7
BOTTOM OF SCREEN 3 BOTTOM OF 3 BOREHOLE 3	DIAMETER OF BOREHOLE3"
	SON INDUSTRIAL AREA SITE

NORTH BRONSON INDUSTRIAL AREA SITE BRONSON, MICHIGAN SG-__LO

OBRIENS GERE	PROTECTIVE STEEL CASING
TOP OF CASING (TOC) ELEVATION	CEMENT PAD
GROUND SURFACE	
TOP OF SLURRY SUGACE	RISER PIPE MATERIAL: TEFLON SCHEDULE: N/A
	INSIDE DIA: 1/4" CEMENT/BENTONITE GROUT (not used)
TOP OF BENTONITE SEAL	BENTONITE SLURRY SEAL
TOP OF SAND PACK	GRANULAR BENTONITE SEAL SAND PACK GLASS BEADS
TOP OF SCREEN 2.5	SLOTTED SCREEN MATERIAL:S.S SCHEDULE:N/A INSIDE DIA:1/4" SLOT NO:5.7
BOTTOM OF SCREEN 3 BOTTOM OF BOREHOLE 3	DIAMETER OF BOREHOLE3"
BOREHOLE	INDUSTRIAL AREA SITE

NORTH BRONSON INDUSTRIAL AREA SITE BRONSON, MICHIGAN SG-LIL

OBRIEN FOERE	PROTECTIVE STEEL CASING
TOP OF CASING (TOC) ELEVATION	CEMENT PAD
GROUND SURFACE	
TOP OF SLURRY Surface	RISER PIPE MATERIAL: TEFLON SCHEDULE: N/A INSIDE DIA: 1/4"
TOP OF BENTONITE SEAL	CEMENT/BENTONITE GROUT (not used)
TOP OF BENTOMIZE OF S	BENTONITE SLURRY SEAL
TOP OF SAND PACK	GRANULAR BENTONITE SEAL SAND PACK GLASS BEADS
TOP OF SCREEN _215	SLOTTED SCREEN MATERIAL: S.S. SCHEDULE: N/A INSIDE DIA: 1/4" SLOT NO: 5.7
BOTTOM OF SCREEN 3	DIAMETER OF BOREHOLE3"
BOTTOM OF BOREHOLE	I INDUSTRIAL AREA SITE

NORTH BRONSON INDUSTRIAL AREA SITE BRONSON, MICHIGAN SG-12

APPENDIX C

Soil Vapor Sample Collection Field Forms

Project#	41686.001.002			Date		4/24	108.	
Project Name	NBIA VI Study			Collect	or <u>/</u>	4763	SON K	SCHNEI DE
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID Associated ambient a Analytical method req		17:2 16:20 975 98 N/A TO-15		Start Pre	ple point b	g) i) ero"? (intended) elow grade	- 29. - 29. - 6. - 4 ho - 2.6 herica Burli	urs 3 - 3,3
Tubing type used Volume purged Chamber tracer gas c Gas Analyzer Reading	Teflon	Length of tub 0.1 l/min (100cc/min 1 1 1	7 ff em 1 to 3 vo racer gas conc.	Tubing volumes pur	volume ged @ < 200 ging		cc Yes U% PUST
Air temperature (°F) Barometric pressure	uring Probe Installation 71 30:31	Rainfall		1 N E est 24 to 48 hrs:	Wind dir Wind sp	ection eed (mph)	NNE 10	
Weather Conditions at Air temperature (°F) Barometric pressure Substantial changes in	Start of Sampling:				Wind dire	ection eed (mph)	ESE 10	
		N	10					
ite Plan showing sam	nple location, buildings	landmarks, pot	tential soil va	por and outdoor	air source	s, preferentia	al pathways	
comments:					·			

Project #	41686.001.002			_ Date	m,20131)	4/08	<u>uneide</u> r
Project Name	NBIA VI Study			Collector	PAL STATE	VO / KATCI	441-1120-1
Sample ID Start Date/Time End Date/Fime Canister ID Flow controller ID Associated ambient a	· -	8 17	:05 1:05	Start Pressu End Pressu End pressu	re ("Hg) re > "zero"? uration (intended) point below grade	2.5 -	3.0
Tubing type used Volume purged Chamber tracer gas of Gas Analyzer Readin Noticeable odor	conc. 99%, gs %O ₂ N/A	Length of tu © 0.1 l/min GG % %CO2 N	(100cc/min) Tr	1 to 3 volum	ubing volume es purged @ < 20 ing purging ID/FID reading	0cc/min? / /U	Yes C 4/, (ppmv)
Weather Conditions of Air temperature (°F) Barometric pressure Substantial changes i	73 30. 21	Rainfall	No II F or over the pas N C	W	/ind direction /ind speed (mph)	NNE N	-
Weather Conditions a Air temperature (°F) Barometric pressure Substantial changes in	30.31	Rainfall during sampling o		w	ind direction ind speed (mph)	ESE 70	-
Site Plan showing sal	mple location, building	ıs, landmarks, po	otential soil van	or and outdoor air	sources, preferenti	al pathways	
		((5%)				
Comments:							

Project #	41686.001.002 NBIA VI Study			Date Collector	M ROBI	24/08 Cm) /4 cm	DE LOSER
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID Associated ambient Analytical method re Tubing type used Volume purged Chamber tracer gas Gas Analyzer Readin	SG- 10 H/24 Y/3,V/ 26 20 air sample ID quired Teflon	/08 92 1/3 N/A TO-15 Length of tub c ② 0.1 I/min (Lab sing 7 100cc/min) 7 / r Tracer	Vacuum gaug Start Pressure End Pressure Sampling durionatory used 2	ge "zero" ("Hg) e ("Hg) : ("Hg) : "zero"? ation (intended) bint below grade TestAr bing volume s purged @ < 20 g purging	4 hours 2.5- merica Burlingto	3.0
Weather Conditions of Air temperature (°F) Barometric pressure Substantial changes Weather Conditions a	730.31 in weather conditions at Start of Sampling:	ion: Rainfall	Nove	Wir Wir to 48 hrs:	nd direction nd speed (mph)	NNE 10 SE	
Barometric pressure Substantial changes i		gs, landmarks, pot	ential soil vapor an	to 48 hrs:	nd speed (mph)	al pathways	
		(54%)				
Comments:							

Project #	41686.001.002 NBIA VI Study			Date Collector	4/ M Rei	24/08 ZISBN/KSCHNE	- <u>1</u> 068
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID Associated ambient a		14. 18. 584 806 N/A TO-15		Vacuum gauge Start Pressure (End Pressure (End pressure > Sampling duration the of sample pointratory used	"Hg) Hg) "zero"? on (intended) t below grade	29 -4 YLS' 4 hours 2.5 - 3,0 merica Burlington	- - -
Tubing type used Volume purged Chamber tracer gas of Gas Analyzer Reading Noticeable odor	onc. 98-59	Length of tubing 0.1 l/min (100 C/6 % %CO ₂ N/A	<u>-</u>	1 to 3 volumes p as conc. during p /A PID/F		cc Occ/min?	.est
Air temperature (°F) Barometric pressure	uring Probe Installation 78 30, 21	Rainfall	NANE er the past 24 to	Wind	direction speed (mph)	NNE	
Weather Conditions a Air temperature (°F) Barometric pressure Substantial changes in	t Start of Sampling: 730,19 1 weather conditions du	Rainfall	NONE.	 Wind:	direction speed (mph)	SWESE 15	
Site Plan showing san	nple location, buildings,	landmarks, potentia	l soil vapor and	l ouldoor air sour	ces, preferenti	af pathways	
Comments:							

Project#	41686.001.002			Date	4/25/	08
Project Name	NBIA VI Study			Collector	m ROBISON) KSCHWEIDE
Sample ID Start Date/Time End Date/Time Canister ID Flow controller ID Associated ambient a Analytical method req Tubing type used Volume purged Chamber tracer gas c Gas Analyzer Reading Noticeable odor	Teflon cc	/ D UP- 10:45 14:45 14:45 14:45 N/A TO-15 Length of tubin @ 0.1 l/min (10) %CO ₂ N/	Dept Labo	Start Pressure End Pressure End pressure Sampling dur h of sample pressure ratory used Them Tu 1 to 3 volume has conc. durin	e ("Hg) e > "zero"? ration (intended) oint below grade TestAn ubing volume es purged @ < 200	$ \begin{array}{c c} \hline & & & & \\ \hline & & &$
Weather Conditions do Air temperature (°F) Barometric pressure Substantial changes in	<u>73</u> 30. dl	Rainfall	NONE r over the past 24 to NO	Wi	nd direction nd speed (mph)	
Weather Conditions at Air temperature (°F) Barometric pressure Substantial changes in	71 39.87	Rainfall _ uring sampling or	NONE over the past 24 to	Win	nd direction nd speed (mph)	: <u>\$</u>
Site Plan showing sam	nple location, buildings		ential soil vapor and	l ouldoor air s	ources, preferenti	al pathways
Comments:						

APPENDIX D

Analytical Laboratory Report

TestAmerica South Burlington, VT

Sample Data Summary Package

SDG: 125196

May 9, 2008

TestAmerica Laboratories, Inc.

Mr. Leo Brausch
The North Bronson PRP Group
(b) (6)

Gibsonia, PA 15044

Re: Laboratory Project No. 28000

Case: 28000; SDG: 125196

Dear Mr. Brausch:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on April 26th, 2008. Laboratory identification numbers were assigned, and designated as follows:

Lab ID	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 04/26/08 ETR No:	125196	
750199	SG-8/2.8-3.3	04/24/08	AIR
750200	SG-9/2.5-3.0	04/24/08	AIR
750201	SG-10/2.5-3.0	04/24/08	AIR
750202	\$G-11/2.5 - 3.0	04/24/08	AIR
750203	SG-12/2.5-3.0	04/25/08	AIR
750204	DUP-1		AIR
750205	FB-1	04/25/08	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The volatile organics analyses for the majority of the samples referenced above were accomplished at dilution based on screen analyses to ensure quantitation of all target constituents within the range of calibrated instrument response.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Don Dawicki Project Manager

Enclosure

CLIENT SAMPLE NO.

SG-8/2.8-3.3

Lab Name: TAL Burlington

SDG Number: 125196

Dilution Factor: 2.50

Sample Matrix: AIR

Lab Sample No.: 750199

Date Analyzed: 04/30/08

Date Received: 04/26/08

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.50	U	0.50	1.3	U	1.3
trans-1,2-Dichloroethene	156-60-5	0.50	U	0.50	2.0	U	2.0
cis-1,2-Dichloroethene	156-59-2	0.50	U	0.50	2.0	U	2.0
Trichloroethene	79-01-6	75		0.50	400		2.7

Printed: 05/09/08 11:01:22 AM Page 1 of 1

CLIENT SAMPLE NO.

SG-10/2.5-3.0

Lab Name: TAL Burlington

SDG Number: 125196

Dilution Factor: 5.60

Sample Matrix: AIR

Lab Sample No.: 750201

Date Analyzed:

05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	1.1	U	1.1	2.8	U	2.8
trans-1,2-Dichloroethene	156-60-5	1.1	U	1.1	4.4	U	4.4
cis-1,2-Dichloroethene	156-59-2	1.1	U	1,1	4.4	u	4.4
Trichloroethene	79-01-6	210		1.1	1100		5.9

CLIENT SAMPLE NO.

SG-11/2.5-3.0

Lab Name: TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: 750202

Date Analyzed: 05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Trichloroethene	79-01-6	8.5		0.20	46		1.1

CLIENT SAMPLE NO.

SG-12/2.5-3.0

Lab Name: TAL Burlington

SDG Number: 125196

Dilution Factor: 6.25

Sample Matrix: AIR

Lab Sample No.: 750203

Date Analyzed: 05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	1.3	U	1.3	3.3	υ	3.3
trans-1,2-Dichloroethene	156-60-5	1.3	U	13	5.2	บ	5.2
cis-1,2-Dichlorgethene	156-59-2	1.3	U	i 3	5.2	υ	5.2
Trichloroethene	79-01-6	210		13	1100		7.0

CLIENT SAMPLE NO.

DUP-1

Lab Name: TAL Burlington

SDG Number: 125196

Dilution Factor: 6.06

Sample Matrix: AIR

Lab Sample No.: 750204

Date Analyzed: 05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results In ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	1.2	U	1.2	3.1	U	3.1
trans-1,2-Dichloroethene	156-60-5	1.2	U	1.2	4.8	U	4.8
cis-1,2-Dichloroethene	156-59-2	1.2	υ	1.2	4.8	U	4.8
Trichloroethene	79-01-6	230		1.2	1200		6.4

Printed: 05/09/08 11:01:25 AM Page 1 of 1

CLIENT SAMPLE NO.

FB-1

Lab Name: TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: 750205

Date Analyzed: 05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	Ŭ	0.51
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	υ	0.20	0.79	U	0.79
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1

CLIENT SAMPLE NO.

CA043008LCS

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: CA043008

Date Analyzed: 04/30/08

Date Received:

Target Compound	C AS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	10		0.20	26		0.51
trans-1,2-Dichloroethene	15 6-60-5	9.6		0.20	38		0.79
cis-1,2-Dichloroethene	156-59-2	10		0.20	40		0.79
Trichloroethene	79- 01- 6	9.8		0.20	53		1.1

CLIENT SAMPLE NO.

CA:343008LCSD

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: CA043008

Date Analyzed:

04/30/08

Date Received:

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	11		0.20	28		0.51
trans-1,2-Dichloroethene	156-60-5	9.9		0.20	39		0.79
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
Trichloroethene	79-01-6	10		0.20	54		1.1

CLIENT SAMPLE NO.

CA 050108LCS

Lab Name: TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00 Sample Matrix: AIR

Lab Sample No.: CA050108

Date Analyzed: 05/01/08

Date Received:

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	10		0.20	26		0.51
trans-1,2-Dichloroethene	156-60-5	9,6		0.20	38		0.79
cis-1,2-Dichloroethene	156-59-2	10		0.20	40]	0.79
Trichloroethene	79-01-6	9.2		0.20	49		1.1

CLIENT SAMPLE NO.

CA050108LCSD

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Samp e No.: CA050108

Date Analyzed:

05/01/08

Date Received:

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Vinyl Chloride	75-01-4	11		0.20	28		0.51
trans-1,2-Dichloroethene	156-60-5	10	,	0.20	40		0.79
cis-1,2-Dichloroethene	156-59-2	11		0.20	44		0.79
Trichloroethene	79-01-6	9.9		0.20	53		1.1

CLIENT SAMPLE NO.

MBLK043008CA

TAL Burlington Lab Name:

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Samp e No.: MBLK0430

Date Analyzed: 04/30/08

Date Received:

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Trichloroethene	79-01-6	0.20	U	0.20	1.1	U	1.1

CLIENT SAMPLE NO.

MELK050108CA

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: MBLK0501

05/01/08

11

Date Received:

Date Analyzed:

RL Results RL Results CAS Target Compound Q in in Q in in Number ppbv ug/m3 ug/m3 ppbv 75-01-4 U Vinyl Chloride 0.20 U 0.20 0.51 0.51 trans-1,2-Dichloroethene 156-60-5 0.20 U 0.20 0.79 U 0.79 cis-1,2-Dichloroethene 156-59-2 0.20 0.20 0.79 0.79 U Trichloroethene 79-01-6 0.20 U 0.20 U 1.1 1.1

TestAmerica Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only fcr tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.
 - CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.
- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- * Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

MS ICP-MS

CV Cold Vapor AA

AS Semi-Automated Spectrophotometric

TestAmerica Burlington

phone 802-660-1990 fax 802-660-1919

30 Community Drive Suite 11

South Burlington, VT 05403

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Mana	ager: 🗘 🕻	LIFF	YANT	7	Samples Coll	lected By:	$h_{-}R$	OBI	SON		1_	of_	<u>2</u> c	OCs			
Company: OBRIEN + LEGE	Phone: 2	48 4	7757	01				50	ANF	SIPE	$R \perp$							
Address: 37000 MAND RUSK City/State/Zip FALM 18:5TON HIW AT 4875 Phone: 148 477 570 FAX: 148 477 5767	Email: Y	ANT20	500	36.00	m								2		T		1	
City/State/Zip FALM ILLIFTON HIM AT 4875 Phone: 148 477 570						1				i	- 1	1	(F)			ĺ	{	io Ou
Phone: 148 477 570	Site Contact	CLIFF											ecti		- 1			Sect
FAX: 148 477 5962	STL Contact		MM			{			. [- 1		es .		-	1	İ	ig i
Project Name: VA POR INSTRUSION INVES	1627 30	Analysis	Turnarou	nd Time		1				ļ			ē					5
Site: NBIA OUL BRONSON, MI	St	andard (Sp	ecify)	X7							ļ		- -		- [- }	.	<u>-</u>
PO# YIGELO	P	lush (Speci	ify)			l				}	ł	ì	(Please specify in notes section)		- 1		j	Other (Please specify in notes section)
								1	1			ASTM D-1946	Se s	F Š		<u>.</u>	Gas	se :
(or or or on to	1	ļ '		Canister	Canister				_	١ ا	ا ي	7	lea lea		돌 :	<u>بر</u> ا ت		Piez
(PROBE DEPTH FBL)	,	}	}	Vacuum in	Vacuum in		ì	15	44	8	25	≥	-ia	P.	ğ :	Gas		e (
Sample Identification	Sample Date(s)	Time Start	Time Stop	Field, "Hg (Start)	Field, 'Hg (Stop)	Flow Controller	Canister ID	5-	TO-14A	EPA 3C	EPA 25C	4ST	Other	Sample Typ	Indoor Air	Ambient Air	Landfill	ğ
	17.				,	 		V		-	===	-			-		-	-
S6-8/28- 3 3	11/24/08	12:20	16:20	-29.5	-6	3981	2975	X							_	_		
S6-9/2.5-30	Ĺ <u>Ĺ</u>	13:05	17:05	-29	1-11	3979	3247	X						San San				
96-10/25-3.0		13.40	17:40	-29	-5	2913	2892	X						A. 7				
Sb-11/2.5-3.0	V		18:20	-29	-4	2806	2584	X						3.250				
56-12/2.5-3.0	4/25/08			7	-11	3301	4118	V										
DUP-1				-29.7	-3	3106	4323	X	7									
	 	با	·		e (Fahrenhei		1 - 1 - 1	1	1	<u>. </u>				5 44 (CA)				
1		Interior		Ambient		i		┨										
	Start	-				+		1										
	Stop	ļ - <u></u> -				 												
	1	J		Pressure (ir	nches of Hg)			 -										
		Interior		Amblent				1										
	Start	1		<u> </u>		1		7										
	Stop	1				+		1										
Special Instructions/QC Requirements & Commen																		
1																		
						1 m												
Samples Shipped by:	Dato/Time:				Campion	Possived by:	11.	<i>a</i>				т					140	
Samples Shipped by: (M. Robison	14727	082	Ilo:CC	7	Samples	Received by:	4.26.0	8	101	5		IFR	DE	X A 174	NB1	LL -	*	•
Samples Relinquished by:	Date/Time:				Receive	d by:	· · · · · · · · · · · · · · · · · · ·			·/		1		. 1	_			
					<u> </u>							<i>[</i>	25	174	9	Valat	7) (2)	. T
Relinquished by:	Date/Time:				Receive	d by:						10	1 4 20	- • (1 1	UU(70	الوس
		Crisida Da Da Da Da Da Da Da Da Da Da Da Da Da	No complete	12574-00 ST2 30	HAUD 2001-00520 5-9	entrale de la company	71 Nove 1778	्व देखेल के विकास के कि	and the second	37.35 B	13,24 3	NO. 1.35 v	1.10 185	ALC: COL	Signal C	19 11 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	THE SAIT	re de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
Lab Use Only Shipper Name:		## TO		Opened	by	Condition:				100						1		

TestAmerica Burlington

30 Community Drive

Suite 11

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919 Samples Collected By: N PIBICO K CHUHDA COCs Client Contact Information Project Manager: Company: Phone: Address: Email: City/State/Zip Other (Please specify in notes section) Phone: Site Contact: FAX: STL Contact: Project Name: **Analysis Turnaround Time** Site: Standard (Specify) Other (Please specify PO# Rush (Specify) Sample Type ASTM D-1946 Landfiil Gas Ambient Air Canister Canister EPA 25C Soil Gas EPA 3C TO-14A Vacuum in TO-15 Sample Field, "Hg Field, 'Hg Flow Controller Sample Identification (Stop) ID Canister ID Date(s) Time Start | Time Stop (Start) 45 .Temperature (Fahrenheit) Interior Ambient Start Stop Pressure (inches of Hg) Interior Amblent Start Special Instructions/QC Requirements & Comments: 851749766083 M. Robigu Pate Time Samples Shipped by Samples Regerved by 14:60 Samples Relinquished by: Received by: Relinquished by: Date/Time: Received by:

Lab Use Only Shipper Name:

Opened by: Condition:

Sample Data Summary – TO-15 Volatile

NBPRP SAMPLE NO.

DUP-1

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix: (soil/water) AIR Lab Sample ID: 750204

Sample wt/vol: 33.00 (g/mL) ML Lab File ID: 750204D

Level: (low/med) LOW Date Received: 04/26/08

% Moisture: not dec. _____ Date Analyzed: 05/01/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 6.1

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

75-01-4-----Vinyl Chloride 1.2 U
156-60-5-----trans-1,2-Dichloroethene 1.2 U
156-59-2----cis-1,2-Dichloroethene 1.2 U
79-01-6-----Trichloroethene 230

NBPRP SAMPLE NO.

FB-1

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix: (soil/water) AIR Lab Sample ID: 750205

Sample wt/vol: 200.0 (q/mL) ML Lab File ID: 750205

Level: (low/med) LOW Date Received: 04/26/08

% Moisture: not dec. _____ Date Analyzed: 05/01/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

75-01-4-----Vinyl Chloride 0.20 U 156-60-5-----trans-1,2-Dichloroethene 0.20 U 156-59-2----cis-1,2-Dichloroethene 0.20 U 79-01-6-----Trichloroethene 0.20 U

NBPRP SAMPLE NO.

SG-10 2.5-3.0

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix: (soil/water) AIR Lab Sample ID: 750201

Sample wt/vol: 36.00 (g/mL) ML Lab File ID: 750201D

Level: (low/med) LOW Date Received: 04/26/08

% Moisture: not dec. ____ Date Analyzed: 05/01/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 5.6

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

75-01-4-----Vinyl Chloride 1.1 U 156-60-5-----trans-1,2-Dichloroethene 1.1 U 156-59-2----cis-1,2-Dichloroethene 1.1 U 79-01-6-----Trichloroethene 210

NBPRP SAMPLE NO.

SG-11 2.5-3.0

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix: (soil/water) AIR Lab Sample ID: 750202

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: 750202

Level: (low/med) LOW Date Received: 04/26/08

% Moisture: not dec. _____ Date Analyzed: 05/01/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

 75-01-4------Vinyl Chloride
 0.20 U

 156-60-5-----trans-1,2-Dichloroethene
 0.20 U

 156-59-2-----cis-1,2-Dichloroethene
 0.20 U

 79-01-6-----Trichloroethene
 8.5

NBPRP SAMPLE NO.

SG-12 2.5-3.0

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix: (soil/water) AIR Lab Sample ID: 750203

Sample wt/vol: 32.00 (g/mL) ML Lab File ID: 750203D2

Level: (low/med) LOW Date Received: 04/26/08

% Moisture: not dec. _____ Date Analyzed: 05/01/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 6.2

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

 75-01-4------Vinyl Chloride
 1.3 U

 156-60-5-----trans-1,2-Dichloroethene
 1.3 U

 156-59-2-----cis-1,2-Dichloroethene
 1.3 U

 79-01-6-----Trichloroethene
 210

NBPRP SAMPLE NO.

SG-8 2.8-3.3

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix: (soil/water) AIR Lab Sample ID: 750199

Sample wt/vol: 80.00 (g/mL) ML Lab File ID: 750199D

Level: (low/med) LOW Date Received: 04/26/08

% Moisture: not dec. ____ Date Analyzed: 04/30/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 2.5

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

 75-01-4------Vinyl Chloride
 0.50 U

 156-60-5-----trans-1,2-Dichloroethene
 0.50 U

 156-59-2-----cis-1,2-Dichloroethene
 0.50 U

 79-01-6-----Trichloroethene
 75

NBPRP SAMPLE NO.

SG-9 2.5-3.0

0.31

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

79-01-6-----Trichloroethene

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix: (soil/water) AIR Lab Sample ID: 750200

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: 750200

Level: (low/med) LOW Date Received: 04/26/08

% Moisture: not dec. _____ Date Analyzed: 05/01/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

75-01-4-----Vinyl Chloride 0.20 U 156-60-5----trans-1,2-Dichloroethene 0.20 U 156-59-2----cis-1,2-Dichloroethene 0.20 U

FORM I VOA

CLIENT SAMPLE NO.

MBLK043008CA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196 Lab Sample ID: MBLK043008CA Matrix: (soil/water) AIR Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CGKB01Q Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 04/30/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Extract Volume:____(uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kq) PPBV Q

75-01-4Vinyl Chloride 156-60-5trans-1,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene	0.20 0.20 0.20 0.20	U U
--	------------------------------	--------

CLIENT SAMPLE NO.

SDG No.: 125196

MBLK050108CA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.:

Matrix: (soil/water) AIR Lab Sample ID: MBLK050108CA

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CGKB01R

Level: (low/med) LOW Date Received: ____

% Moisture: not dec. Date Analyzed: 05/01/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

 75-01-4------Vinyl Chloride
 0.20 U

 156-60-5-----trans-1,2-Dichloroethene
 0.20 U

 156-59-2-----cis-1,2-Dichloroethene
 0.20 U

 79-01-6-----Trichloroethene
 0.20 U

CLIENT SAMPLE NO.

CA043008LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196 Lab Sample ID: CA043008LCS Matrix: (soil/water) AIR Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CGK10QQD Date Received: ____ Level: (low/med) LOW % Moisture: not dec. Date Analyzed: 04/30/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

75-01-4Vinyl Chloride 156-60-5trans-1,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene	10 9.6 10 9.8	
--	------------------------	--

CLIENT SAMPLE NO.

CA043008LCSD

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Lab Code: Silv Case No.: 20000 SAS No.: SDG No.: 123130

Matrix: (soil/water) AIR Lab Sample ID: CA043008LCSD

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CGK10QQ2

Level: (low/med) LOW Date Received: _____

% Moisture: not dec. _____ Date Analyzed: 04/30/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

75-01-4Vinyl Chloride 156-60-5trans-1,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene	11 9.9 11 10	
--	-----------------------	--

CLIENT SAMPLE NO.

CA050108LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 SDG No.: 125196 Lab Code: STLV Case No.: 28000 SAS No.: Lab Sample ID: CA050108LCS Matrix: (soil/water) AIR Lab File ID: CGK10RQD Sample wt/vol: 200.0 (g/mL) ML Date Received: ____ Level: (low/med) LOW % Moisture: not dec. _____ Date Analyzed: 05/01/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: ____(uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

75-01-4Vinyl Chloride 156-60-5trans-1,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene	10 9.6 10 9.2	
--	------------------------	--

CLIENT SAMPLE NO.

CA050108LCSD

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.:

SDG No.: 125196

Matrix: (soil/water) AIR

Lab Sample ID: CA050108LCSD

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: CGK10RQ2

Level: (low/med) LOW

Date Received: ____

% Moisture: not dec. ____

Date Analyzed: 05/01/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) PPBV

Q

75-01-4Vinyl Chloride 156-60-5trans-1,2-Dichloroethene 156-59-2cis-1,2-Dichloroethene 79-01-6Trichloroethene	11 10 11 9.9	
--	-----------------------	--

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix Spike - Sample No.: CA043008LCS

COMPOUND	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
Vinyl Chloride trans-1,2-Dichloroethen cis-1,2-Dichloroethene Trichloroethene	10 10 10 10		10 9.6 10 9.8	100	70-130 70-130 70-130 70-130

COMPOUND	SPIKE ADDED (ppbv)	LCSD CONCENTRATION (ppbv)	LCSD % REC #	% RPD #		IMITS
Vinyl Chloride trans-1,2-Dichloroethen cis-1,2-Dichloroethene Trichloroethene	======================================	11 9.9 11 10	110 99 110 100	10 3 10 2	25 25 25 25 25 25	===== 70-130 70-130 70-130 70-130

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 4 outside limits Spike Recovery: 0 out of 8 outside limits

COMMENTS:	 	

FORM 3 AIR VOLATILE LAB CONTROL SAMPLE

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Matrix Spike - Sample No.: CA050108LCS

COMPOUND	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
Vinyl Chloride trans-1,2-Dichloroethen cis-1,2-Dichloroethene Trichloroethene	10 10 10 10	=========	10 9.6 10 9.2	100 96 100 92	70-130 70-130 70-130 70-130 70-130

COMPOUND	SPIKE ADDED (ppbv)	LCSD CONCENTRATION (ppbv)	LCSD % REC #	% RPD #	_	IMITS REC.
Vinyl Chloride trans-1,2-Dichloroethen cis-1,2-Dichloroethene Trichloroethene	10 10 10 10	11 10 11 9.9	110 100 110 99	10 4 10 7	25 25 25 25 25	70-130 70-130 70-130 70-130

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 4 outside limits Spike Recovery: 0 out of 8 outside limits

COMMENTS:	

^{*} Values outside of QC limits

FORM 4 VOLATILE METHOD BLANK SUMMARY

MBLK043008CA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Lab File ID: CGKB01Q Lab Sample ID: MBLK043008CA

Date Analyzed: 04/30/08 Time Analyzed: 1536

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

Instrument ID: C

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	I ———————	LAB	LAB	TIME
	03MDI II M0			
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		=======================================	==========	========
01	CA043008LCS	CA043008LCS	CGK10QQD	1349
02	CA043008LCSD	CA043008LCSD	CGK10QQ2	1442
03	SG-8 2.8-3.3	750199	750199D	2013
04	SG-9 2.5-3.0	750200	750200	0039
05	SG-10 2.5-3.	750201	750201D	0412
				I I
06	DUP-1	750204	750204D	0558
07	SG-11 2.5-3.	750202	750202	0841
80	FB-1	750205	750205	0933
09				
10				
11				
12				
13				
				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28	 			
29				
30				
201	i			

COMMENTS:		
	·····	

FORM 4 VOLATILE METHOD BLANK SUMMARY

MBLK050108CA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Lab Sample ID: MBLK050108CA Lab File ID: CGKB01R

Date Analyzed: 05/01/08 Time Analyzed: 1657

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

Instrument ID: C

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01 02 03	CA050108LCS CA050108LCSD SG-12 2.5-3.	CA050108LCS	CGK10RQD CGK10RQ2 750203D2	1513 1604 2141
04				
05 06				
07 08				
09				
10 11				
12				
13 14				
15 16				
17				
18 19				
20				
21 22				
23 24				
25				
26 27				
28				
29 30				

COMMENTS:	
	-

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Lab File ID: CGK01PV BFB Injection Date: 04/14/08

Instrument ID: C BFB Injection Time: 0843

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176 177	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	16.2 47.7 100.0 6.7 0.0 (0.0)1 92.0 6.8 (7.4)1 89.4 (97.2)1 5.9 (6.6)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	======================================	7.0000000	=======================================		0020
01	ASTD0002	ASTD0002	CGK002V	04/14/08	0932
02	ASTD0005	ASTD0005	CGK005V	04/14/08	1024
03	ASTD005	ASTD005	CGK05V	04/14/08	1114
04	ASTD010	ASTD010	CGK10V	04/14/08	1205
05	ASTD015	ASTD015	CGK15V	04/14/08	1256
06	ASTD020	ASTD020	CGK20V	04/14/08 04/14/08	1347 1437
07 08	ASTD040	ASTD040	CGK40V	04/14/08	143/
09					
10					
11					
12					
13	-,				
14		·			
15					
16					
17					
18					
19					
20					
21					
22					

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Lab File ID: CGK19PV BFB Injection Date: 04/30/08

Instrument ID: C BFB Injection Time: 1017

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	17.8 51.4 100.0 7.3 0.0 (0.0)1 83.5 6.0 (7.1)1 80.6 (96.5)1 5.2 (6.4)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========		==========	=======	=======
01	ASTD010	ASTD010	CGK10QV2	04/30/08	1203
02	CA043008LCS	CA043008LCS	CGK10QQD	04/30/08	1349
03	CA043008LCSD	1	CGK10QQ2	04/30/08	1442
04	MBLK043008CA	MBLK043008CA	CGKB01Q	04/30/08	1536
05		750199	750199D	04/30/08	2013
06		750200	750200	05/01/08	0039
07	SG-10 2.5-3.	750201	750201D	05/01/08	0412
08	DUP-1	750204	750204D	05/01/08	0558
09		750202	750202	05/01/08	0841
10	FB-1	750205	750205	05/01/08	0933
11					}
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Lab File ID: CGK20PV BFB Injection Date: 05/01/08

Instrument ID: C BFB Injection Time: 1119

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176 177	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	18.5 54.7 100.0 7.1 0.0 (0.0)1 86.9 6.1 (7.0)1 84.4 (97.1)1 5.7 (6.7)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========	==========	=======================================	=========	_========
01	ASTD010	ASTD010	CGK10RV2	05/01/08	1328
02	CA050108LCS	CA050108LCS	CGK10RQD	05/01/08	1513
03	CA050108LCSD		CGK10RQ2	05/01/08	1604
04	MBLK050108CA		CGKB01R	05/01/08	1657
05	SG-12 2.5-3.	750203	750203D2	05/01/08	2141
06					
07					
08 09		'			
10					
11					
12					
13					
14					
15					
16					
17					
18 19					
20					
21					
22					
22					

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Instrument ID: C Calibration Date(s): 04/14/08 04/14/08

Heated Purge: (Y/N) N Calibration Time(s): 0932 1437

GC Column: RTX-624 ID: 0.32 (mm)

	2=CGK00: =CGK05			.5=CGK0(0 =CGK1(
COMPOUND		RRF0.5		RRF5	RRF10	RRF	RSD
======================================	0.871	0.954	=====	0.829			
trans-1,2-Dichloroethene_	1.484				1.340		
cis-1,2-Dichloroethene	1.263	1.302	ļ	1.137			
Trichloroethene	0.359			0.338	0.364		
	ļ				ļ 		
	ļ 						
						_ ,	
						·	
					· 		
		- 					
							
				·			
				·			
	J						
	ļ 						
Companyed with required min				-DOD			

Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Instrument ID: C Calibration Date(s): 04/14/08 04/14/08

Heated Purge: (Y/N) N Calibration Time(s): 0932 1437

GC Column: RTX-624 ID: 0.32 (mm)

RRF40 =CGK40V	··,	· · · · · · · · · · · · · · · · · · ·		 	 ·	
COMPOUND	RRF15	RRF20	RRF40		RRF	RSD
Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene		0.750			0.815 1.381 1.207 0.380	11.3

* Compounds with required minimum RRF and maximim *RSD values.
All other compounds must meet a minimim RRF of 0.010.

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Instrument ID: C Calibration Date: 04/30/08 Time: 1203

Lab File ID: CGK10QV2 Init. Calib. Date(s): 04/14/08 04/14/08

Heated Purge: (Y/N) N Init. Calib. Times: 0932 1437

GC Column: RTX-624 ID: 0.32 (mm)

COMPOUND	RRF	RRF10	MIN RRF	%D	MAX %D
2222222222222222222222	=======	=======	======	=====	====
Vinyl Chloride	0.815	0.816	0.01	0.1	30.0
trans-1,2-Dichloroethene	1.381	1.320	0.01	4.4	30.0
cis-1,2-Dichloroethene	1.207	1.212	0.01	0.4	30.0
Trichloroethene	0.380	0.354	0.01	6.8	30.0

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Instrument ID: C Calibration Date: 05/01/08 Time: 1328

Lab File ID: CGK10RV2 Init. Calib. Date(s): 04/14/08 04/14/08

Heated Purge: (Y/N) N Init. Calib. Times: 0932 1437

GC Column: RTX-624 ID: 0.32 (mm)

COMPOUND	RRF	RRF10	MIN RRF	%D	MAX %D
	=======	========	=======	=====	====
Vinyl Chloride	0.815	0.753	0.01	7.6	30.0
trans-1,2-Dichloroethene	1.381	1.221	0.01	11.6	30.0
cis-1,2-Dichloroethene	1.207	1.131	0.01	6.3	30.0
Trichloroethene	0.380	0.331	0.01	12.9	30.0

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: 125196

Lab File ID (Standard): CGK10QV2 Date Analyzed: 04/30/08

Instrument ID: C Time Analyzed: 1203

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

	, 						
		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	=======	======	========	======	=======	======
	12 HOUR STD	461582	8.94	2217132	9.79	2057653	12.21
	UPPER LIMIT	646215	9.27	3103985	10.12	2880714	12.54
	LOWER LIMIT	276949	8.61	1330279	9.46	1234592	11.88
	==========	========	======	=======	_=====	=======	=======
	CLIENT						
	SAMPLE NO.						
		=======	=======	========	======	=========	
01	CA043008LCS	478286	8.94	2166058	9.79	1913968	12.21
02	CA043008LCSD	478519	8.94	2137378	9.79	1875794	12.21
03	MBLK043008CA	445884	8.94	2256099	9.79	1932788	12.21
04	SG-8 2.8-3.3	323308	8.94	1489722	9.79	1355814	12.21
05	SG-9 2.5-3.0	341007	8.94	1648445	9.79	1506630	12.21
			8.94		9.79		
06	SG-10 2.5-3.	324011		1622281	1	1572617	12.21
07	DUP-1	324971	8.94	1553296	9.79	1423295	12.21
08	SG-11 2.5-3.	365231	8.94	1537136	9.79	1502305	12.21
09	FB-1	369558	8.94	1855316	9.79	1672484	12.21
10							
11							
12			[
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
					l		1

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area

AREA LOWER LIMIT = - 40% of internal standard area

RT UPPER LIMIT = + 0.33 minutes of internal standard RT

RT LOWER LIMIT = - 0.33 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Case No.: 28000 SAS No.: SDG No.: 125196 Lab Code: STLV

Date Analyzed: 05/01/08 Lab File ID (Standard): CGK10RV2

Time Analyzed: 1328 Instrument ID: C

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

AREA # RT # AREA # RT # AREA # RT # AREA # RT # AREA # RT # 12 HOUR STD UPPER LIMIT 677951 9.27 3230643 10.12 3146930 12.54 10WER LIMIT 290551 8.61 1384561 9.46 1348684 11.88		 -	TC1 (DCM)		TCO /DED)	1	IS3 (CBZ)	
12 HOUR STD		i	IS1 (BCM)	ъm 4	IS2 (DFB)	D. III		Dm 11
12 HOUR SID UPPER LIMIT 677951 9.27 3230643 10.12 3146930 12.54 1348684 11.88			AREA #	KT #	AREA #	1	AREA #	1
UPPER LIMIT			========	======	=========	[========	1
LOWER LIMIT 290551 8.61 1384561 9.46 1348684 11.88							1	
CLIENT SAMPLE NO.						l .		
CLIENT SAMPLE NO.		LOWER LIMIT	290551	8.61	1384561	9.46	1348684	11.88
SAMPLE NO. ====================================		=======================================	========	======	========	======	=======	======
01 CA050108LCS		CLIENT						
01 CA050108LCS		SAMPLE NO.						
02 CA050108LCSD 478593 8.94 2165231 9.79 2057013 12.21 03 MBLK050108CA 441714 8.94 2266411 9.79 1979312 12.21 04 SG-12 2.5-3. 313568 8.94 1535429 9.79 1535193 12.21 05 06 07 08 09 10 11 12 12 13 14 15 16 16 17 18		=========	=========	======	========	======	========	=====
02 CA050108LCSD 478593 8.94 2165231 9.79 2057013 12.21 03 MBLK050108CA 441714 8.94 2266411 9.79 1979312 12.21 04 SG-12 2.5-3. 313568 8.94 1535429 9.79 1535193 12.21 05 06 07 08 09 10 11 12 12 13 14 15 16 16 17 18	01	CA050108LCS	470330	8.94	2268625	9.79	1902449	12.21
03 MBLK050108CA 441714 8.94 2266411 9.79 1979312 12.21 04 SG-12 2.5-3. 313568 8.94 1535429 9.79 1535193 12.21 05 06 07 08 09 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				8.94				
04 SG-12 2.5-3. 313568 8.94 1535429 9.79 1535193 12.21 05 06	- 1					· -		
05								
06		00 12 2.3 3.	313300	0.51	1000120] ,,,,	1333173	12.21
07 08 09 10 11 12 13 14 15 16 17 18								
08 09 10 11 12 13 14 15 16 17 18			i					
09								
10								
11								
12 13 14 15 16 17 18								
13		· 						
14								
15								
16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	14							
17 18								
18								
	18							
19	19							
20								
21								
22								

IS1 (BCM) = Bromochloromethane (DFB) = 1,4-Difluorobenzene IS2 (CBZ) = Chlorobenzene-d5 IS3

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

TestAmerica Burlington

30 Community Drive

Canister Samples Chain of Custody Record

Suite 11

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919 TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information Company: OBRIEN + LEGE	Project Manager: CLIFF YANTZ Sa Phone: 248 477 5701				Samples Col	lected By:	h B	OBI	50N 510B	/	1	of_	2	coc	s			_	
Company: OBRIEN + GERE Address: 37 BCC (MAND RIVER City/State/Zip FARMILETON HIM IN 1973 Phone: 148 477 5767 Project Name: VA POR INSTRUJON INVA Site: NGIA OUA BRONSON M PO# 41(CEIC	Email: Y Site Contact STL Contact STL Contact STL CONTACT STL CONT	DON	YAA MAWI Turnarous ecify)	36. cc	m					בועוז			pecify in notes section)						Other (Please specify in notes section)
(MIRE DEPTH FRU	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum In Field, 'Hg (Stop)	Flow Controller	Canister ID	T0-15	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify	Sample Type	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please
\$6-8/2.8-33 \$6-9/2.5-30	4/24/08	12:20 13:05	16:20	-19.5 -29	-6 -11	3979	2975 3242	X											
Sb-10/25-3.0 Sb-11/2.5-3.0	V	13.40	17:40		-5	2913 2806	2892 2584	XX										. — —	
S6-12/2.5-3.0 DUP-1	4/25/08	10:45	14:45	-29.7 -29.7	-11	3301 3106	4323	X											
					e (Fahrenhei	1)		լ՝											i
†		Interior		Amblent		<u> </u>		-											
	Start					ļ		1											
	Stop			<u> </u>															
				Pressure (i	nches of Hg)			1											
		Interior		Ambient				4											
	Start	ļ <u>.</u>		ļ		ļ		_											
	Stop	<u> </u>		<u></u>				1											
Special Instructions/QC Requirements & Commen	ts: '																		
Samples Shipped by: Samples Relinquished by:	Date/Time:	30	Ilo:CC	2	1 6	Received by:	4.26.0) \ \	10 {	5		Fr.	DF	X 17	AIRE	316	L #	-	
Relinquished by:	Date/Time:				Received							18	35	17	49	76	60	8	3
Labiuse only Shipper Names 24.				Opened	by	Condition:										ili.			

TestAmerica Burlington

phone 802-660-1990 fax 802-660-1919

30 Community Drive Suite 11

South Burlington, VT 05403

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Man		-	1		Samples Col	lected By:	V U	131	(0)		<u> </u>	of	2	coc	s			
Company:	Phone:		AMS	135			K	¿Ci	1 L	DIS	٤			क्रिक्ट एटडी					
Address:	Email:		1×1.	Min							İ	İ	_		-	}	Ì	ł	2
City/State/Zip Phone:	Site Contac			MADI		((. 1	. [{	section)		{	I	- {	1	į
FAX: (SAM)	STL Contac	t:											S Sec				l		s se
Project Name:			Turnarou	nd Time				ĺ				l	notes		į		Ì	Ì	age
Site:	S	landard (Sp		D				l					.⊑		ļ	- 1	ļ	ļ	.⊑ - <u>≺</u>
PO #		Rush (Spec				1		1	(. (Other (Please specify		ŀ	ĺ	. ((Other (Please specify in notes section)
								1				946	Se S	Sample Type	1			ا ا	s as
	- (l	Canister	Canister	l	ĺ	l	ا بر ا		اي	ASTM D-1946	Plea	e 1	Indoor Air	Ambient Air	55	Landfill Gas	Ples
	Sample	1		Vacuum In Field, "Hg	Vacuum In Field, 'Hg	Flow Controller		5.	TO-14A	A 30	EPA 25C	Σ	er (i o	ğ	bie	Soil Gas	df.	į
Sample Identification	Date(s)	Time Start	Time Stop		(Stop)	ID ID	Canister IO	TO-15	2	EPA 3C	EP,	AS.	ㅎ	Sa	밀	Απ	So	Ē	ਲੋ
ERI	white			-10 7	201	1110	43ic6	V					1						\Box
<u> </u>	4/25/08		ļ	-29.7	-29.7	NIA	7-366	\downarrow \nearrow	 	ļ	ļ		 	135.0			\vdash		
	,									1					Ì	·))	Ì	
		ļ ———		1				1		T			1						}
		ļ		·}		ļ	ļ		 				ļ	1		<u> </u>			
			ļ	})				}				J						
									1]	7.74 2.74					_ [
						 	+	- }		 	}			101.631				-+	
			<u> </u>	<u> </u>					<u> </u>	[10				{	
				Temperatur	e (Fahrenhei	t)					_								1
		Interior		Ambient				}											S
	Start																		
	Stop			1															ı
				Pressure (in	iches of Hg)			†											
		Interior		Ambient]											1
ļ	Start							1											- 1
1	Stop					1		7											1
Special Instructions/QC Requirements & Commo	nts:	<u> </u>																	
1																			1
						*													
Samples Shipped by:	;Date/Time	100			Samples	Received by:	(121	1	1	(01	7	TE	50	174	1Z	171	DR	iti 1	A
(M. 108)	94) 4/1	13/00	//5	:60			-11	عُ لَمْ وَ	1	(01	<u> </u>	11	1 JL/	リエア		J/	47	7~}	- 14
Samples Relinquished by:	Date/Time:	•			Receive	d by:	•					6	25	174	99	7/*	60	8 i	7
Relinquished by:	Date/Time:				Receive	1 hv	-					┨ `	<i>y</i> 1	,		, 0	φ ω	ر	
					1.000,00	а <i>о</i> у.				_	_								
							N. Mari	7 200	3.4.4	1.00				建设装	151	of the	V.		17.7
Lab Use Only Shipper Name				Opened	by 🖫 🗀 :	Condition:	1	100	100 S				3.50	A THE		1. The	源源		是法院

APPENDIX E

Data Validation Report

To: Cliff Yantz

cc:

From:

KA Storne

Re:

Review of Data for the NBIA Site Lagoon Sludge

File:

Treatability Study, Sampling Performed April 2008 12716/41686.002.001

Date:

June 5, 2008

This memorandum provides the data validation results for the soil vapor samples collected for the NBIA Site Lagoon Sludge Treatability Study in Michigan. O'Brien & Gere conducted sample collection activities in April 2008.

The following table summarizes the analysis performed for this sampling event.

Table 1-1. Analytical methods and references

Parameter	Method	Reference
VOCs	USEPA Method TO-15	1
	ronmental Protection Agency. 1999. Compendium of Methods in Ambient Air. Cincinnati, Ohio.	for the Determination of Toxic

TestAmerica Laboratories, Inc. Burlington (TAL-Burlington) of South Burlington, Vermont performed the analyses for this sampling event.

The laboratory packages generated by TAL-Burlington contained quality control analysis and supportive raw data.

Full validation was performed on the samples collected for this sampling event.

The analytical data generated for this investigation were evaluated by O'Brien & Gere using the quality assurance/quality control (QA/QC) information presented in the following documents:

- O'Brien & Gere. 2007. Vapor Intrusion Work Plan, North Bronson Industrial Area, Operable Unit 1, Bronson, Michigan. Farmington Hills, Michigan.
- United States Environmental Protection Agency. 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Cincinnati, Ohio.

Data affected by excursions from the previously mentioned QA/QC criteria were qualified using the following USEPA data validation guidance and professional judgment:

 United States Environmental Protection Agency (USEPA). 2006. Validating Volatile Organic Analysis of Ambient Air in canister by Method TO-15. SOP HW-31, Revision 4. Albany, New York

USEPA data validation guidelines have been modified to reflect the requirements of the method used in the analysis of samples collected for this sampling event. Qualifiers were applied to data that failed to meet the quality control criteria presented in the USEPA method.

The validation included checking the following parameters:

Cliff Yantz June 5, 2008 Page 2

- Work plan compliance
- Chain-of-custody records
- Sample collection
- Holding times
- Calibrations
- Blank analysis
- Laboratory control sample (LCS) analysis
- Laboratory duplicate analysis
- Internal standards performance
- Gas chromatography/mass spectrometry (GC/MS) instrument performance check
- Target analyte quantitation, identification, and QLs
- Documentation completeness.

The samples that were submitted for data validation are listed in Table 1-2 presented in Attachment A.

The following sections of this memorandum present the results of the comparison of the analytical data to the QA/QC criteria specified above. Based on the QA/QC information review, an overall evaluation of data usability is also presented in the final section.

VALIDATION APPROACH

The following approach is used to evaluate calibration data for USEPA Method TO-15:

- VOC target analytes are evaluated using the criteria of 30 percent relative standard deviation (%RSD) or correlation coefficient criteria of 0.990 for initial calibration curves.
- Calibration verifications were evaluated using a criterion of 30 percent difference (%D) for target analytes.

Data are qualified using the following approach for evaluation of quality control data in this type of validation:

- Laboratory established control limits are used to assess LCS and laboratory duplicate data.
- If percent recoveries are less than laboratory control limits but greater than ten percent, non-detected and detected results are qualified as approximate (UJ, J) to indicate minor excursions.
- If percent recoveries are greater than laboratory control limits, detected results are qualified as approximate (J) to indicate minor excursions. Non-detected results are not qualified.
- If percent recoveries are less than ten percent, detected results are qualified as approximate (J) and non-detected results are qualified as rejected (R) to indicate major excursions.
- If RPDs for laboratory duplicates are outside of laboratory control limits, detected results are qualified as approximate (J) to indicate minor excursions.
- Qualification of data associated with laboratory duplicate excursions was limited to the laboratory duplicate pair.

Cliff Yantz June 5, 2008 Page 3

- For blank evaluation, if target analytes are detected in the sample at a concentration that is less than five times the concentration detected in the associated blank, the sample result is qualified as "U".
- Internal standard recoveries are evaluated using control limits of within 40% of the associated calibration verification standard. The results for target analytes associated with internal standard area recoveries 25% or greater but less than the lower standard area are qualified as approximate (J, UJ) to indicate minor internal standard recovery excursions. The non-detected results for target analytes associated with internal standard area recoveries less than 25% are rejected (R) to indicate major recovery excursions.

The cumulative effect of the various QA/QC excursions is employed in assigning the final data qualifiers. For example, if a sample result is affected by low LCS recovery for which the "J" qualifier is applied, but severely low internal standard recoveries result in the rejection of the sample result (R), the final qualifier is "R".

VOLATILE ORGANIC COMPOUND IN AIR DATA EVALUATION SUMMARY

The following QA/QC parameters were found to meet method and validation criteria or did not result in additional qualification of sample results:

- Work plan compliance
- Chain-of-custody records
- Sample collection
- Holding times
- Calibrations
- Blank analysis
- LCS analysis
- Laboratory duplicate analysis
- Internal standards performance
- GC/MS instrument performance check
- Target analyte identification
- Documentation completeness.

No method or validation criteria excursions were identified for the data generated from this sampling event and the data were not qualified.

Additional observations are described below.

I. Target analyte quantitation and QLs.

Due to elevated target analyte concentrations, dilutions were performed for the following samples: SG-8/2.8-3.3, SG-10/2.5-3.0, SG-12/2.5-3.0, and DUP-1[SG-12/2.5-3.0]. Only the diluted results were reported for these samples.

Sample results were reported to the QL.

DATA USABILITY

Overall data usability with respect to completeness for the final sample results reported is 100 percent for the VOC air data. Based on the validation performed, the Work Plan completeness goal of 95 percent was met for these analyses.

Table 2. Sample cross reference list

Samples collected and submitted for data validation

Laboratory Name	Laboratory SDG	Laboratory Identification	Client Identification	Date Collected	Matrix	Analysis Requested
Test America Burlington	125196	750199	SG-8/2.8-3.3	4/24/2008	Soil Gas	VOCs
Test America Burlington	125196	750200	SG-9/2.5-3.0	4/24/2008	Soil Gas	VOCs
Test America Burlington	125196	750201	SG-10/2.5-3.0	4/24/2008	Soil Gas	VOCs
Test America Burlington	125196	750202	SG-11/2.5-3.0	4/24/2008	Soil Gas	VOCs
Test America Burlington	125196	750203	SG-12/2.5-3.0	4/25/2008	Soil Gas	VOCs
Test America Burlington	125196	7501204	DUP-1[SG-12/2.5-3.0]	4/25/2008	Soil Gas	VOCs
Test America Burlington	125196	7501205	FB-1	4/25/2008	Soil Gas	VOCs

Note:

SDG indicates sample delivery group.

VOCs indicates volatile organic compounds.

CLIENT SAMPLE NO.

SG-8/2.8-3.3

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 2.50

Sample Matrix: AIR

Lab Sample No.: 750199

Date Analyzed:

04/30/08

Date Received: 04/26/08

Target Compound	CAS Number	Results In ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.50	U	0.50	1.3	U	1.3
trans-1,2-Dichloroethene	156-60-5	0.50	U	0.50	2.0	υ	2.0
cis-1,2-Dichloroethene	156-59-2	0,50	U	0.50	2.0	U	2.0
Trichloroethene	79-01-6	75		0.50	400		2.7

CLIENT SAMPLE NO.

SG-9/2,5-3.0

05/01/08

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Date Received: 04/26/08

Lab Sample No.: 750200

Date Analyzed:

Sample Matrix: AIR

Target Compound	CAS Number	Results In ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
trans-1,2-Dichloroethene	156-60-5	0.20	υ	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Trichloroethene	79-01-6	0.31		0.20	1.7		1.1

CLIENT SAMPLE NO.

SG-10/2.5-3.0

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 5.60

Sample Matrix: AIR

Lab Sample No.: 750201

Date Analyzed: 05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results In ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Vinyl Chloride	75-01-4	1,1	U	1.1	2.8	U	2.8
trans-1,2-Dichloroethene	156-60-5	1.1	U	1.1	4.4	U	4.4
cls-1,2-Dichloroethene	156-59-2	1.1	U	1,1	4.4	U	4.4
Trichloroethene	79-01-6	210		1.1	1100		5.9

CLIENT SAMPLE NO.

SG-11/2.5-3.0

Lab Name;

TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: 750202

Date Analyzed:

05/01/08

Date Received:

04/26/08

Target Compound	CAS Number	Results In ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL In ug/m3
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
trans-1,2-Dichloroethene	156-60-5	0.20	U	0.20	0.79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	υ	0.79
Trichloroethene	79-01-6	8.5		0.20	46	-	1.1

CLIENT SAMPLE NO.

SG-12/2.5-3.0

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 6.25

Sample Matrix: AIR

Lab Sample No.: 750203

Date Analyzed:

05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results in ppbv	a	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Vinyl Chloride	75-01-4	1.3	υ	1,3	3.3	U	3.3
trans-1,2-Dichioroethene	156-60-5	1.3	υ	1.3	5.2	υ	5.2
cis-1,2-Dichlorgethene	156-59-2	1.3	U	1 3	5.2	U	5.2
Trichloroethene	79-01-6	210		1.3	1100		7.0

CLIENT SAMPLE NO.

DUP-1

56-12/25.30

Lab Name: TAL Burlington

SDG Number: 125196

Dilution Factor: 6.06

Sample Matrix: AIR

Lab Sample No.: 750204

Date Analyzed: 05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL In ug/m3
Vinyl Chloride	75-01-4	1.2	U	1.2	3.1	U	3.1
trans-1,2-Dichloroethene	156-60-5	1.2	U	1.2	4.8	U	4.8
cis-1,2-Dichloroethene	156-59-2	1,2	υ	1.2	4.8	U	4.8
Trichloroethene	79-01-6	230		1.2	1200		6.4

CLIENT SAMPLE NO.

FB-1

Lab Name:

TAL Burlington

SDG Number: 125196

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: 750205

Date Analyzed:

05/01/08

Date Received: 04/26/08

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results In ug/m3	Q	RL In ug/m3
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	บ	0.51
trans-1,2-Dichloroethene	156-60-5	0.20	υ	0.20	0,79	U	0.79
cis-1,2-Dichloroethene	156-59-2	0.20	U	0.20	0.79	U	0.79
Trichloroethens	79-01-6	0.20	U	0.20	1.1	U	1.1